BREAKING NEWS: PROVISIONAL PROGRAMME AVAILABLE FOR NEXT 2-DAY TECHNICAL MEETING TO BE HELD ON 23 & 24 OCT 2024 - PLEASE SEE EVENTS SECTION

Newsletter Issue 088

FABIG Members: Log-in to access all FABIG resources

CONTENTS:

This FABIG Newsletter comprises the following:

  • Editorial: FABIG to participate in International Process Safety Week (IPSW) in December 2024
    G. Vannier - The Steel Construction Institute (SCI)
  • Consequences of the 2020 Beirut explosion
    S. Rigby1,2, A. Ratcliff1, S. Clarke1, D. Farrimond1, S. Fay3 and W. Wholey4 - 1University of Sheffield, 2Arup Resilience (UK), 3AWE, 4Arup Resilience (USA)
    This paper presents a case study of the 2020 Beirut explosion and efforts to better understand its consequences. Video footage posted on social media shortly after the explosion was first used to derive an approximate explosive yield by compiling the radius-time profile of the blast wave and correlating with well-known semi-empirical relations. This was followed by a detailed physics-based simulation of the explosion using the estimated yield. The results were used in a forensic assessment of observed building damage.
  • Modelling the behaviour of LPG tanks exposed to partially engulfing pool fires
    G.E. Scarponi, V. Cozzani, G. Antonioni and F. Doghieri - University of Bologna
    This paper presents a parametric analysis to investigate the behaviour of a 1.9 m3 bullet LPG tank in partial engulfment fire scenarios. A set of case studies were defined, varying the positions of the zone exposed to fire and the filling degree of the tank. These were simulated using a CFD modelling approach previously validated against partial engulfment fire test results, with a view to demonstrating how CFD simulations may be considered as “digital twins” of fire tests and used to investigate specific safety aspects in detail.
  • Hydrogen jet diffusion modeling using physics-informed graph neural network and sparsely-distributed sensor data
    J. Shi, X. Huang and A.S. Usmani - The Hong Kong Polytechnic University
    This paper introduces a physics-informed graph deep learning approach (Physic_GNN) for efficient and accurate hydrogen release and diffusion prediction using sparsely-distributed sensor data. Publicly available experimental data of hydrogen jet diffusion was applied to demonstrate the higher accuracy and computational efficiency of the proposed approach.
Non-member price: £75.00 Add to Basket
Published in: February 2024
Keywords:
Consequences of Beirut explosion / Modelling of LPG tank subjected to pool fire / Hydrogen dispersion modelling using GNN

Online purchase options:

Non-Members of FABIG are able to purchase PDF copies of the FABIG Newsletters.

Corporate Membership

Joining FABIG provides access to a wealth of technical resources as well as excellent training opportunities, and ensures that your organisation is kept abreast of the latest developments in fire and explosion engineering. FABIG also provides a forum for discussing technical issues with industry peers via participation in the FABIG activities, therefore creating invaluable networking opportunities. Become a Member Request a Membership Quote

DO YOU HAVE A QUESTION? TO GET IN TOUCH PLEASE

Click here

KEEP UP-TO-DATE WITH THE LATEST FABIG NEWS AND EVENTS

Subscribe